

Inputs

- Dayside oval emits 1e9 cm⁻² s⁻¹ O⁺ at 0 10s eV
 - Hourly $\Delta(Pd) \sim 1$ nPa per Moore et al., 1999.
- Nightside oval emits 1e8 cm⁻² s⁻¹ O⁺ at 0 few keV
- These fluxes could be much lower but would rarely be higher
- They tend to be in this ratio except for Alfvenic aurora near the nightside polar cap boundary, which match dayside flux

Outputs

- Peak density to 10 cm⁻³, vs 1 cm⁻³ for polar wind or solar wind.
- Peak pressure to 100 nPa, vs 3 for solar wind or 0.3 for polar wind
- Dayside outflow contributions dominate density and pressure
- NBz stops upstream escape over poles

SBz Night / Day Sampling

SBz Night / Day Release Density

SBz Night / Day Release Pressure

- Dayside reconnection produced high latitude magnetosheath of both source populations (night and day)
- Day source dominates both density and pressure.

Day Release (top) Vel. Dist X,Y=-10,0 Night Release (bot) Vel. Dist

Day (top) Release Vel. Dist at X,Y= 0,6

Night(bot) Release Vel. Dist
SBZ oxygen ouroral wind, day particle
SBZ oxygen ouroral wind, day partic
SBZ oxygen ouroral wind, day partic

NBz Night / Day Sampling

NBz Night / Day Release Density

NBz Night / Day Release Pressure

NBz Night / Day Release Pressure

- Little if any polar lobe flow with NBz
- Day source less dominant than in SBz case.

